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GENERALSTUDY OF GAS FLOWTHROUGHANY TUBE AND PASSING THROUGH
THE SPEED OF SOUND(UNDERSTEADY STATE CONDITIONS OR ANY OTHER

CONDITION WITH HEAT ADDITION AND POSSIBLY CHEMICAL REACTIONS)

Max Serruys

Professor, National Museum and College of Higher Technology
for Training Students in the Application of Science to Industry

and Central School of Arts and Manufacturing

i. OBJECTIVE AND FRAMEWORK OF STUDY

The flow of an elastic fluid in a tube, under steady state or variable

state conditions, with or without heat addition, and with or without

changes in chemical composition, constitutes a phenomenon whose

practical applications (gas turbines, reaction propulsion systems, etc.)

are important or soon will be, and which for this reason has been the

subject of numerous theoretical studies from the time of Laval and

Hugoniot until the present time (however, generally limited to simple

special cases).

Even if we assume for simplicity that we are dealing with a perfect

fluid with a flow that is both laminar and practically one-dimensional,

the physical nature of the phenomenon was not always clear, sometimes

not even the nature of the thermodynamic and dynamic fluid flow.

For example, the summary study of combustion in cylindrical tubes had

already been conducted several years ago, when Colonel Barre [i]

observed certain difficulties in interpretation of the full equation

yielding the velocity, difficulties which D.E.F.A. asked me to explain

three or four years ago, and it is only now that I have been able to

precisely define [2], through simple differential equations, the nature

of the thermodynamic fluid flow corresponding to this special case

(however, without having succeeded in indicating at this time in an

unquestionable manner what happens when the fluid attains the speed of

sound, while we continue to furnish heat or induce chemical reactions).

Since then, various authors [4-28] have tackled this particular

difficulty of the problem, but while certain of these appeared to have

found the solution, they have arrived at this by means which do not

permit us to clearly discern the detailed reasons, to precisely define

the essential factors of the phenomenon or to predict their influence

with a general formula.

This is why we recently decided to attempt to extend the very simple

calculation method which permitted us to provide an exact estimate of

the fluid flow occurring under steady state conditions and in a

cylindrical tube to the general case under variable or steady state

conditions in any tube with heat addition and chemical reaction.

"Numbers in the margin indicate pagination in the foreign text.
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As we will see, the present report, which is the outcome of this
study, permits us not only to establish by very simple means a
differential equation whose interpretation completely explains what
occurs at the moment of the passage through the speed of sound, but to
define all the modes of fluid flow in the general case and in the
principal special cases, as well as the influence of the different
factors themselves on this flow: shape of the tube, chemical reactions,
addition of exterior heat, etc.

2. GENERAL STUDY OF PHENOMENON THROUGH THERMODYNAMIC AND STANDARD FLUID /3

MECHANICS PROCESSES

2.1 BASIC HYPOTHESIS AND PRINCIPAL NOTATIONS

In order to avoid prematurely specifying the problem, we will begin

by assuming that the fluid flows under variable state conditions in any

type of tube and that energy addition is possible and even changes in

chemical composition.

However, to avoid excessive complications in the calculations, we will

make the following simplifying hypotheses:

2.1.1 - the tube has an unvarying shape;

2.1.2 - the fluid is perfect, ie. devoid of density;

2.1.3 - the flow is laminar, ie. devoid of turbulence;

2.1.4 - the flow is one-dimensional and occurs through planar

sections, _r at least such that at any instant orthogonal surfaces exist

at any point within the fluid flows, such that the characteristics of

velocity, pressure, density, temperature, and chemical composition, are

very similar at any point of each of said orthogonal surfaces, so that

they may be considered as equal without any appreciable error.

The principal notations are the following, others being defined

throughout the report:

W velocity of the fluid at any point for any trajectory

s abscissa measured along an axis tangent to the trajectory of the

point considered

P pressure of the fluid at the same point

absolute density of the fluid at the same point

T absolute temperature of the fluid at the same point

R Mariotte-Gay-Lussac-Avogadro constant for one molecule

2



Z transversal cross-section of the tube along an orthogonal surface
in the fluid flow with the abscissa s considered

M mean molecular mass corresponds to the composition of the fluid
in the cross-section E considered

total mass flow through the cross-section

U approximate internal energy for the unit of mass

H approximate enthalpy for the unit of mass

E chemical potential energy corresponding to the composition of the
fluid in the cross-section considered

Q quantity of heat received per unit of mass of the fluid

work received per unit of mass

C true specific heat at constant pressure at the temperature T for
the unit of mass of the fluid contained in the cross-section

c true specific heat at constant volume

ratio of the true specific heats

a "speed of sound" corresponding to the cross-section Z considered

t time

2.2 DIFFERENTIAL STUDY OF FLOW UNDER VARIABLE STATE CONDITIONS

2.2.1 Fundamental Equation for Fluid Mechanics

First we will write the fundamental equation of mechanics in the form

corresponding to one of the general equations for non-viscous fluid

mechanics, in the case where an axis OS is tangent to the trajectory at

the point considered, and where we may neglect the influence of the

weight field:

(1) dW _W _W I_P i
=- p, s"

2.2.2 Continuity Equation

We will write the continuity equation in the classical form:

_s + 5t --0

/__4



or, by noting that E is a function of s alone:

or:

_p I _ (oxw)
bt -- Z bs '

bP [ ____PsbW I - bE'-IW=- w +p-5-+_pw_|,

However, obviously we also may express the continuity by writing:

a=pEW,

where:

d Z dW
(3) d _ -- dP -5-_ + _-.

g P

/j

or:

(3')

WbX1 1 (aw aw' 
E bs

Which, through comparison with (2), yields:

(4) law Wbg W2aF ]-St - _, al +-7-a---; "

This equation is simplified in the case where the variation of

conditions is sufficiently slow such that the mass flow is practically

identical through all cross-sections of the tube at a given instant, ie.

in the case where _ is zero, yielding:
as

_W Wb_

(4') $--'l"= a hi"

2.2.3 Conservation of Energy

Finally, the conservation of energy obviously may be written as

follows, with the notations adopted:

d(½ W "a) + dU + dE'= dQ + d_

and, by taking into consideration that d_ = -d(pv):

d(_W 2) = dQ--dE--dH,

4



or:

or:

(5)

(?W ?W ds'_W _-[dI+ _ /=dQ--dE--dH.

!

w?W'_ dQ dE dH[

W --_ -5 _-_/= dt dt dt I"

2.2.4 Fluid State Equation

In the case where the fluid is gaseous and where we may apply the

Mariotte-Gary-Lussac and Avogadro laws without appreciable error, we

also may write:

(6)
P R

where:

(6')
dP dM d o dT

-- -.I-- --

--0-= -- 2XT+ p T

It obviously is difficult to completely resolve the question in the

most general case without defining any of the conditions required at the

boundaries of the fluid flow; however, several general considerations

are possible, which result from the direct study of the fundamental

equations above or their combinations.

2.2.5 Relationships Between Kinetic Enerqy and Pressure Variations

Equation (i) expresses that the fluid acceleration is always in the

direction opposite to the pressure gradient existing in the cross-

section considered and numerically equal to the quotient of this

pressure gradient divided by the density. Although the first part of

this proposition is obvious, there will be good reason for constantly

remaining within the framework of this for the physical interpretation

of the phenomemon.

By multiplying by ds, equation (I) obviously may

follows:

LI W _w lbP_ _W
(7) [ . --_ds= pbs as---_bs ,

be written as

or by integrating:

(7')
i, ep [, .2 .,.-¢---j,.-_7 ds

5



These forms (7) and (7') deduced from the general equation for fluid

mechanics with tangent axes (i), demonstrate, as we have already

indicated in previous publications:

-that the increase in kinetic energy produced between two cross-

sections of abscissa so and s under variable state conditions is equal
to the increase of kinetic energy which was produced under steady state

conditions between the same cross-sections, deducting the integral

* _W ;
,.57 ds

-that consequently, when the conditions are slightly variable, it is

possible to obtain an approximate value for the increase in actual

kinetic energy by calculating the increase in kinetic energy which was

produced under steady state conditions [according to the Saint-Vincent

formula, ie. by neglecting the integral _s _\V in formula (7')] and by
s.Tyds

!s _W "deducting an approximate value for the integral _ds deduced from
the values of W thus calculated; ,.

-that in conformance with equation (7'), the increase in kinetic

energy produced between two cross-sections of abscissa s o and s may

remain positive, even when the corresponding pressure difference is

negative, and consequently even if motion is "decelerated", ie. if

i_W _is sufficiently positive. In fact this last remark-- .%?ds
constitutes the explanation for the phenomenon observed with engine

exhausts which is known under the name of the Kadenacy effect, a

phenomenonwhose occurrence has been recognized even in the absence of

any exhaust ducts.

2.2.6 Differential Equation Yielding Velocity Gradient

In equation (5), we may express dH=d(CT), and assuming that C is

constant, or at least neglecting d_CCwith respect to Cd_TT, which

dt dt

yields:

dW (bW , w?W_ dQ_tdE__cdT=wk 7 -dT'

/7

where: dW 1 [-dQ--dE ./1 dP 1 dM I dpT-]
dl -- V_r U -_ -- Ca (_ -d-[ + M dt p dt 21'

P tl 2

hiP C -- Y-I -- I'and since: CT= _ Y P Y--

it becomes, by considering (2):

(8)



But, by virture of (i), we have:

and consequently:

(9)

dP bP bP bP
dr-- bt + W bs - bt

w_W_-- Pw(_-_t + 37/

a2 dP a2 1 b P

(T--1) PW dt -- (y--1) WP bt
W bW'_

v--_-i (_5-_-+ --_1;

by defining d_WWas a function of the partial differentials for the
dt

velocity, (8) thus may be written:

bW bW+w )(1
--W

a 2 1 dM a 2 bW a2 1 b Z

(y--1)WM dt (y--1)W bs --¥--I Z _--s-'

(10) .(a" -- \V"-) _\%' _\V-_-=W--+(y--1)dQ--dE a2 1 dMdl M dt

/___s

or even, since E is a function of s alone, and since consequently:

W
3Z dZds dE

?s -- ds dr-- dt

-_-= w-_- + a-_.q_ +_ .

2.2.7 Discussion of Differential Equation (I0)

If we consider formula (i0), we can readily extract an entire series
of precise indications on the nature of the flow under the different

conditions which can be anticipated. In fact, we see:

2.2.7.1 Influence of Velocity

-that when all other factors are equal (ie., for the same flow
acceleration value _W, energy addition dQ-dE, variation of molecular

3t dt

mass 1 dM, and divergence of the tube in the cross-section considered
M dt

1 bE, the absolute value of the velocity gradient increases more and
E 5s

more rapidly with the value for this velocity W, as long as this remains

less than the "speed of sound" a, and that on the contrary, the absolute
value of the velocity gradient decreases when W increases for values of



W greater than the "speed of sound" a.

2.2.7.2 Siqn of Velocity Gradient

-that the velocity gradient is positive for values of W less than a

and negative for values of W greater than a, when the second term is

positive (ie., when 1 _Z is negative in the absence of energy
Z _s

addition, variation of molecular mass and flow acceleration, or when the

energy addition and positive flow acceleration, or the sum of the two

corresponding terms and of the term 1 dM, cancels out the term ! ___Z,
M dt Z _s

when the cross-section considered corresponds to the divergent portion

of the tube).

Inversely, the velocity gradient is negative for velocities less than

a, and positive for velocities greater than a when the second term is

negative.

/9

2.2.7.3 Case Steady State and Isentropic Flow for Constant Composition

Fluids

-that consequently, and in the special case of a steady state flow

without energy addition nor chemical reaction, the velocity gradient

cannot remain positive, regardless of the value of W, and that _ is

negative for W less than a and positive for W greater than a, ie. the

tube is convergent for velocities less than the "speed of sound" and

divergent for velocities greater than the "speed of sound". In

addition, we discover in this case the necessary existence of a

"throat", for which _Z=0, for W=a if the flow is laminar (in fact, if

_s

there were no throat, the velocity gradient in the corresponding cross-

section would pass from +_ to -_, and consequently the pressure gradient

would pass from -a to +a or vice versa, as (I) demonstrates; as a

result, the distribution of pressures around the cross-section E would

conform to figure 1 below and two shock waves of opposite directions

would appear in this cross-section).

These waves having a velocity greater than the speed of sound cannot

fail to be propagated in the upstream and downstream cross-sections and

they would be capable of producing perturbations there, as a function

of the gas supply or gas evacuation conditions, which in the end would

result in subsequent development and possible stability of the flow.

8



Section F_ d'abcisse

_correspondant a W=a

5 s

Figure i.

Second term of (i0) or (ii)>0 }for w:,
Second term of (I0) or (ii)<0 }

Key: 1-Cross-section Z of abscissa s corresponding to W=a.

2.2.7.4 Influence of Enerqy Flux

-that all other factors being equal (ie. for the same flow

acceleration value 5_WW and for the same divergence of the tube in the
_t

cross-section considered ! _, and for the same value of W), the

Z _s a ......

absolute value of the velocity gradient increases as the energy flux

dO-dE increases (disregarding the generally small influence of the
dt

corrective term 1 dM), while the second term of equation (i0)
M dt

(disregarding dQ-d_) is positive, and that the reverse is true in the
dt

opposite case [as long as dQ-dE does not become large enough to change
dt

the sign of the second term of (i0)].

-that in a more general fashion, positive energy flux dQ-dE acts

dt

on the velocity gradient in the same way as convergence of the tube,

all other things being equal.

/I_20

2.2.7.5 Influence of Variations in Tube Cross-Section

-that all other factors being equal (ie. for the same

acceleration value __WW and for the same energy addition dO-dE and

_t dt

flow

9



for the same Mach number W), the velocity gradient increases as
a

1 bZ increases in absolute value [assuming that ___Z is of opposite
_s _s

sign to the sum of the other terms of the second term of equation (i0)

and that we can neglect the possible variations of the term d_MM of

dt

this second term] and that in a more general fashion, the pressure

gradient assumes the same value as if there was no energy flux nor

variation of mean molecular mass, all other factors being equal (ie.,

the Mach number and flow acceleration), and that the divergence of the

tube has the following algebraic value:

ld_ 1 dM y--ldQ--dE
2 dt + M dl a 2 dt

2.2.7.6 Influence og Flow Acceleration

-that all other factors being equal (ie. for the same energy flux,

same variation of mean molecular mass and same convergence or divergence

of the tube), the velocity gradient, which is assumed to be positive,

increases if there is acceleration of the flow and if W is less than a,

and that the reverse is true if W is greater than a.

2.2.7.7 Appearance of Shock Waves for W=a in General Case

-that if W=a (ie., if we find ourselves in a cross-section where the

fluid attainsthe "speed of sound") and if the second term is not zero,

the velocity gradient __WW passes from +a to -a, which by virtue of

_s

equation (i), produces passage of the pressure gradient _ from -_

to +_, and consequently, as we have seen in paragraph 2.2.7.3, the

appearance of two shock waves of opposite directions having propagation

speeds greater than a, which has the effect of almost immediately

modifying the boundary conditions, and consequently the nature of the
flow.

2.2.7.8 Possibilities of Passinq Throuqh Speed of Sound Without Flow

Discontinuity

In a general fashion, we see that the velocity W cannot exceed the

value a (however variable) for the "speed of sound" without producing

discontinuity in the velocity or pressure gradients if the second term

of equation (i0) is zero, ie. if a precise relationship exists in the

cross-section considered between the divergence of the tube, the energy

flux, the variation of mean molecular mass and the local acceleration

of motion __WW.

ht

Consequently: If we are given the divergence of the tube, the energy

flux and the variation of mean molecular mass in the cross-section Z,

/11
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where W=a, the velocity and pressure gradients would remain finite only

if the motion is accelerated (or decelerated) and if the flow

acceleration _W assumes the precise value which cancels the second
_t

term of equation (i0).

On the contrary, if we are given the flow acceleration _W, the
at

energy flux and the variation of mean molecular mass, the velocity and

pressure gradients may remain finite for W=a only if the divergence of

the tube assumes the precise value which cancels the second term of

equation (i0).

In addition, if we were given __WW, ! _ and 1 dM, the velocity and

t _ _s M dt

pressure gradients would remain finite for W=a only if the energy flux

d_Q-dE assumed the precise value which would cancel the second term of
dt

equation (I0) under these conditions.

2.2.7.9 Passing Throuqh W=a Under Steady State Conditions

In a general fashion, we also see that if there are steady state

conditions, the "speed of sound" corresponds to the "throat" of the tube

and the throat to the "speed of sound" only if the sum of the'terms [of

the second term of equation (i0)] pertaining to the energy flux and the

variation of mean molecular mass is zero.

2.2.7.10 Passinq Through W=a With Cylindrical Tubes

In this case, it is obvious that the velocity W cannot exceed the

value a corresponding to the "speed of sound" without the velocity and

pressure gradients becoming infinite (ie. without appearance of shock

waves) unless the flow acceleration in the corresponding cross-section

has the precise value _W which cancels the second term of equation
_t

(i0), or if the energy flux dQ-dE is cancelled and changes sign for
W=a. dt

However, it should be noted that the flow acceleration required to

compensate for positive heat addition, or more generally a positive

value for the set of terms in. dO-dE and d_MM, is a deceleration, ie.,

a slowing of the flow. dt dt

2.2.7.11 General Conclusions Concerning Possibility of Transferring

Energy to Fluids Having Attained Speed of Sound

From the preceding discussions, we see that it is always possible to

transfer energy to a fluid, but that for a given velocity, this is

/I_!
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possible only in a certain fashion; if the flow velocity is equal to
the "speed of sound", a precise relationship must exist between the
divergence of the tube ! _, the heat flux transferred to the fluid

E bs

dQ, the energy flux dE resulting from chemical reactions, the

dt dt

variation of mean molecular mass ! dM, and the flow acceleration __WW
M dt _t

in the cross-section where this particular velocity is attained;

lacking this, a discontinuity in the values of the velocity and pressure

gradients appeared at the level of this cross-section, which pass from

+_ to -_ or vice versa, with the consequence of the formation of two

shock waves of opposite directions which very rapidly perturb the

conditions at the boundaries of the flow (to the extent that they are

capable of being perturbed).

2.2.7.12 Possibilities of Passinq Throuqh Speed of Sound Without

Changinq Siqn of Velocity Gradient

It is obvious that the required condition sufficient such that the

velocity always varies in the same direction, or more particularly so

that its derivative does not change sign at the moment when we cross the

"speed of sound", ie. in the cross-section where W=a, is that the second

term changes sign for W=a, and for this velocity value alone. The

convergence of the upstream portion and the divergence of the downstream

portion with respect to the cross-section W=a, recognized to be

necessary in the case of steady state and isentropic flow of a constant

composition fluid, is only a special case of this proposition, which is

however at least theoretically applicable to both the acceleration of

the fluid from a low velocity to a supersonic velocity and to the

deceleration of a fluid from a supersonic velocity to a subsonic or zero

velocity.

2.2.8 Differential Equation Defininq Pressure Gradient

Equation (i) obviously can be placed in the form:

_W 1 _P 1 _W

(1') _s _---pW_s W'_t"

By inserting this value for ___W in equation (i0), it becomes:

1 (a_.W_=.'__P_
--Tw\ y--I /as

[- 1 a=--W ' W -_)W dQ--dE a2 1 dM a'-W I_Z
V +V-1_1-$7 + y-1M

(11) I -a'- W 2aP ;)W F dQ--dE a _dM
__( -- )_ = pa_-_-_-+ PWL(Y--1) dl M dlL

12



or else, by replacing W Z by dE:

s dt

_ . bP 2_W [- dQ--dE ,1 dM ldZh]
, G 21 - _ --}-

(a_--W-)_ s - _a _ T-pW l_(Y--1) dt 31 dt z-d-t/_l

2.2.8.1 Conditions Required for Pressure Gradient to Remain Finite

As would be expected, we readily verify that the second term of

equation (ii) is cancelled for W=a under the same conditions as the

second term of equation (i0); in other words, the condition required

such that the pressure gradient does not become infinite in the cross-

section where the fluid velocity becomes equal to the speed of sound is

exactly the same as that required so that the velocity gradient does not

become infinite in this same cross-section; and that this condition is

defined by writing that the second term of equation (i0) is equal to

zero.

In fact, the two conditions in question are written respectively:

and

_W 1F dQ--dE

3t -- W_(Y--l) dt

W a2 [- dQ-- dE

3t---W [_(:'--1) dt

/1 dM 1 dZ',l-],a 2 I_ -""

1 dX'FI'

thus for W=a:

bW 1 [ dE--
dZ

(1 dM 1 .._)].

2.2.8.2Pressure Gradient Correspondinq to Zero or Neqliqible Velocity

With all of the terms of the second term of equation (ii) containing

W as a factor, except for the term _W, we immediately see that the

)t

pressure gradient when flow begins, ie. for zero or negligible velocity,

is practically independent of the heat flux provided to the gas, of the

chemical reaction which may occur, and even of the convergence or

divergence of the tube, such that it depends only on the flow

acceleration )_WW occurring at the instant considered. In particular,
_t

the pressure gradient is always zero or negligible when flow begins (ie.

for zero or negligible velocity) if we have steady state conditions.

/13

2.2.8.3 Other Factors Influencinq Pressure Gradient

Finally, we see in equation (ii) that the pressure gradient increases

(or decreases) with the energy flux transferred to the fluid, and

13



proportionally is greater when the velocity is closer to a, and that it
increases (or decreases) with the convergence or divergence of the tube,
depending on whether we find ourselves in the subsonic region (or in the
supersonic region).

2.2.8.4 Siqn of Pressure Gradient

As a general rule, the pressure gradient is of opposite sign to that

of the velocity gradient existing in the same cross-section, as expected

and as proven through comparison of equations (i0) and (ii).

/i__ 4

2.3 INTEGRATION OF MOTION UNDER STEADY STATE CONDITIONS

Neither equation (i0) nor equation (II) are susceptible to direct

integration, since they contain the "speed of sound" a which is a

function of the condition of the fluid, and in particular of its

temperature T.

To completely resolve the problem posed,

discover and combine with equation (i0)

containing only W and T.

it thus is necessary to

an independent equation

It is obvious that the heating of the fluid could be deduced from

conservation of energy, and in particular from the application that we

can use, by considering the unit mass of the fiuid as receiving both

heat energy, possibly supplied from the outside, and work, sometimes

negative, corresponding to its expansion, and as possessing only as

potential energy its substantial internal energy U and its chemical

potential energy E, which yields:

d_+ dQ = dU+ dE

or:

c dT + p dO = dQ - dE

and, by considering equation (6) and the fact that _ = !

P

dv d p et p dv p d p
v p p P

dT p d p dQ -- dE

dr-- dt

or-
dT dQ -- dE R l d p

c _-- dt +_Tp dr'

14



which, by considering equation (2), finally yields:

(12) dT _ T b T I clQ--dE n T( w w x3

However, we may transform equation (i0) by expressing a as a function

of T and by multiplying the two terms by y-l, which yields:

(10') / RT- Wth_W _W 1)dQ--dE R_/1 dM W_Z_

In principle, equations (12) and (I0') contain only two unknowns W and

T which define the mathematical solution to the problem posed. However,

it is obvious that solving this system of equations can be done in

completely different ways, according to the laws which we assume to

define the heat flux dQ, the energy released by the chemical reaction

dt

_d_EE, the variation of mean molecular mass resulting from this last d_MM,
dt dt

the shape of the tube and the variations over time of the boundary

conditions which finally determine the flow acceleration _W. Thus,
bt

it is logical to move directly to the study of the principal interesting

special cases.

3__=.STUDY OF STEADY STATE FLOW

In the case of steady state conditions, the preceding equations

obviously are simplified by the fact that the partial differentials for

the various variables (W, P, T) become zero with respect to time, and

an additional simplification of the problem obviously results from the

fact that the mass-flow _ is the same throughout all of the cross-

sections of the tube.

This last observation allows us to perform the calculation in a

different manner, with greater advantage than by specifying the general

equations (i0) or (i0'), (ii) and (12) above, and we also will see that

it becomes possible to extend the solution much further without great

difficulty. We will accomplish this through successive application of

the differential equations and through application of the full

equations.

/15
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2.1 DIFFERENTIAL EQUATIONS CORRESPONDING TO MOST GENERAL CASE OF

STEADY STATE CONDITIONS

3.1.1 General Equation for Fluid Mechanics

This time this is written:

15



(1)
dP

W dW --
P

3.1.2 Continuity Equation

This time this is written:

(2)

or:

(2')

_= Zp\V.

dE dp dW
-2- +-? +-W = o.

3. I. 3 Conservation of Enerq_ Equation

(3) W dW = dQ - dH - dE = dQ - dE - C dT

3.1.4 State Equation

This remains unchanged and is still written:

(4) P_B' T or aP ap
p--M P-- p

3.1.5 Differential Equation Defining Temperature Variation

From equation (2), we deduce:

and from (2') :

1 _ ZW,

By considering (i), it becomes:

(5) W' +-- = o v-

or, by considering (2):

or

_P dP,

d Z Z'- dP
d p + _Z_ =_ pp __
p _"

/1_s
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and by considering

or:

(6)

However, on the

where:

(4') :

dP dM

ff+M dT dZ _ppdPT+E - _-,

E ) dP dM dT d E._PP--* P-M

other hand, we deduce from (i)

P dP

0 P -- C dT -- (dQ -- dE)'

and (3) :

(7)

By

(a)

or"

(8')

dP M [C art -- (dQ -- dE)l.
P -- RT

replacing d_PPfrom (7) in equation (6), it becomes:
P

( ) M [(dQ__dE)__CdT ] dM _ dEI--_Po RT -- M + -E--'
.i

However:

and:

P R ,
= y_'l,y_- a2 =

Yp 1

_. --W'

such that

or, by

and by

(8') becomes:

=-- _--_ (dQ--dE)+ ._T +-2-

considering that:

simplifying:

M P a z '

c r=ci_=r_ i

(9)
a z 5I / a z1 = _ \_Vv-"

i

----l)(dQ--dE)+ \M "-
/

We already

cancelled for

see in equation (9) that the coefficient of dQ-dE

_=a2, while the coefficient of dT is not cancelled,

Y

/19
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which could mean that the energy flux will have no influence on the

temperature variation at the moment where the velocity W reaches the

value , while the variation of molecular mass and the convergence

or divergence of the tube will continue to influence the temperature

gradient for this velocity value.

We also see in equation (9) that the coefficient of dT is cancelled

for W=a, while those for the second term are not cancelled, which

corresponds to the condition already mentioned in the first part of the

present study, with respect to the passage through the "speed of sound",

and according to which a precise relationship must exist between the

energy flux received by the fluid, the variation of mean molecular mass,

and the convergence or divergence of the tube, such that the velocity

and pressure gradients, and thus temperature gradients, do not become

infinite in the absence of flow acceleration, ie. under steady state

conditions.

In a more precise fashion, the condition in question obviously is

expressed under steady state conditions by the fact that the second term

of the equation must be zero for W=a, ie. through the relationship:

(1o)

or:

(i0')

M7--I

R y

°'(97)(dQ--dE) +_ +-- =0.

..._ .

This condition is identified, as can be readily verified, with that

which we have obtained by setting the second terms of equations (I0) or

(ii) of paragraph 2.2 to zero and by having _WW=0 and W=a.
t

We also see in equation (9) that the direction of the temperature

variation changes, all other things being equal (ie. for the same sign

of the second term), when W passes through the value a corresponding to

the "speed of sound". On the contrary, dT retains its sign when W

reaches the value a if the second term changes sign for W=a (ie. if the

velocity gradient itself remains of constant sign throughout the entire

length of the tube).

However_ equation (9) may be transformed by multiplying the two terms

by (_-i) _, and by observing that:

which yields:

(9')

M C -- c I 1

(7-- 1)R --- c C--c--?'

/d3I

/2____o
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We discover in equation (9') the fact that heat addition or a chemical

reaction without any variation of mean molecular mass have no effect on

the temperature of the fluid for W -- a and that the temperature

gradient _y

becomes infinite for W=a if condition (i0) or (i0') is not fulfilled.

In addition, we see in (9') that for very small velocity values, ie.

when flow begins, the convergence or divergence of the tube and the

variation of mean molecular mass have practically no influence on the

variations of the fluid temperature, which at this moment are the same

as with heating at constant pressure, since for W=0, we have:

dT = dQ - dE

C

Later, we will effectively discover the fact that the flow always

begins to be isobaric for W=0, except in the very special case of

isentropic expansion.

3.1.6 Differential Equation Defininq Velocity Variations

Equation (3) obviously may be written:

dW 1 1
W -- W' W dW = _ (dQ -- dE -- C dT)

or, by taking C dT from equation (9'):

[dW dQ--dE C (y-- 1) T{dM
W- W' l--_a,_W,j-- a'--w' \M +

or, by observing that:

R

C(y--1)T=y(C--c)T=yqT= a',

/2____!1

dW -- a 2 {/d_Iw- + '
or:

"W--a2--W 2 CT 3I E "

This equation could have been obtained, as can be readily verified

by setting __WW=0 and by observing that under steady state conditions

ht

_W = d_WW = dW dt = 1 dW, directly from equation (i0) transformed from

s ds dt ds W dt

paragraph 2.2.6, corresponding to the general case of the variable state

19



condition.

We discover in equation (ii) that the velocity gradient becomes
infinite for W=a, if however the parenthetical term is not also
cancelled for W=a.

We also discover that the velocity gradient changes sign for W=a, if
the parenthetical portion of the second term does not change sign under
the same conditions.

In particular, we see that in the absence of energy addition and
variation of mean molecular mass, d_EZmust pass from negative values to

E
positive values by being cancelled for W=a (ie. that there must be a
"throat" for the passage through the "speed of sound", such that the
velocity gradient is constantly positive throughout the tube).

In addition, we see that if there is energy addition (in the form of
heat addition or chemical reaction) and if we neglect the possible

variation of molecular mass resulting from this last, the condition such

that the velocity gradient does not become infinite for W=a is that the

relative variation of cross-section of the tube d__Z, corresponding to

Z

the cross-section where the fluid velocity is equal to the "speed of

sound" is equal to the relative variation of absolute temperature d_TT
t

of the fluid which would result from the energy flux which is provided

to it (directly or through the chemical reaction which is produced),

with heating at constant pressure.

In the special case considered for steady state flow, the equation

demonstrates in a more precise fashion that energy addition (having the

consequence of rendering the sum of the terms in dQ, dE and dM different

from zero) has the effect of moving the cross-section where the fluid

attains the "speed of sound" to beyond the throat (if the energy

addition is positive) and short of this (if the energy addition is

negative), such that the throat itself no longer corresponds to the

"speed of sound".

Finally, and in a general fashion, we discover the fact that the

velocity varies in the same way as in an isentropic flow where the

divergence of the tube would have the value:

d E dM dQ -- dE

v-f-+ M CT

3.1.7 Differential Equation Defininq Pressure Variations

Equation (i) may be written:

W dW=
P dP a z dP

pP yP"

/22
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Thus, we have:

(12)
P -- a2 -- W _ . -}- M

As above, we observe that equation (12) could be deduced directly from

equation (ii) transformed from paragraph 2.2.10, corresponding to the

variable state condition, by having _W=0 and _W=l dW.
_s W at

it is useless to persist further with the discussion of this equation,

since in any case, equation (i) demonstrates that dp and dW are

constantly of opposite signs. This point will be refined later.

However, we cannot fail to observe that according to equation (12)

dD must be zero for W=0, thus negligible when fluid flow begins.

P

In addition, we verify in equation (12) that the relative pressure

variation tends to become infinite and to change sign for W=a, remaining

finite at this moment only if the parenthetical portion of the second

term is cancelled for W=a and retains its sign only if in addition said

parenthetical term changes sign upon passage through the speed of sound.

As would be expected, the conditions required so that the pressure

gradient remains finite or remains with the same sign throughout the

entire length of the tube, thus are exactly the same as those which are

required so that the velocity gradient of the fluid remains finite, or

of constant sign, also throughout the entire length of the tube.

3.1.8 Differential Equation Defininq Fluid Density Variations

If suffices to note that according to equation (2'):

from which we deduce:

(13)

P

d p _ a2__ W 2 + M CT --
P

Direct discussion of equation (13) would not offer much additional

benefit, given that which has already been provided for equations (ii)

and (12). On the contrary, the expression d__ will permit us to
I

calculate the polytropic coefficient n for a flow "tangent" to that of

the fluid in the cross-section considered.

Finally, we observe that for pressure variations, as for velocity

variations, everything occurs as for the isentropic expansion of a

21
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constant composition fluid, except that the divergence of the tube must

be replaced by the expression:

However, of course this analogy pertains to the velocity and pressure

variations corresponding to a cross-section Z at actual velocities W and

sonic velocities a and at a pressure P.

3.1.9 Value of Polytropic Exponent "Tanqent" to Fluid Flow in Cross-

Section Considered

It is obvious that we always may represent the fluid flow by a

polytropic equation p_n=cte in an infinitely small interval in the

vicinity of the cross-section considered, on the condition that we

select an appropriate value for n, ie. defined by the obvious

relationship:
dP

P

d_2"

P

Under these conditions, we also deduce from (12) and (13):

(14)
dM dQ--dE dZ

YW' --M+ CT Zn
dM dQ--dE W'dZ"

---M+ CT a'-Z-

Equation (14) clearly provides very interesting indications on the

flow of the fluid through the tube.

In fact, we see the following in this equation.

3.1.9.1 Value Correspondinq to W=0

-that for W=0, and if dM dO-dE is not precisely zero, n is always

M CT

zero; ie. that when motion begins, and when the velocity of the fluid

remains low with respect to the speed of sound, its flow is practically

isobaric, regardless of the shape of the corresponding portion of the

tube and the conditions under which the flow occurs (provided that it

is not isentropic within the limited sense of the word).

/24

3.1.9.2 Values Correspondinq to Interval W=0, W=a

-that when W varies between 0 and a, we see in formula (14) that the

22



variations of n result from those of W2 on the one hand, and from those

a2
of a fraction which we may consider as resulting from the addition of

the same quantity (d_Q-dE_dM) to the numerator and the denominator of
CT M

the fraction: dE

a2

\V2dE -- \V2.

From this, it turns out that if the velocity increases constantly in

this portion of the flow (which according to (ii) requires that the

numerator of said fraction is always positive and consequently also the

denominator if we assume dQ--dE dM _ _. n remains of necessity
cr To /

between the two boundary values: W 2 if dE
in fact precisely realized: y-_ _n _y -Z-_0 ; these values are

-the first, when d_EE is constantly zero (special case of the

cylindrical tube; E

-the second, when d_d___dM is constantly zero (special case of the
CT M

isentropic expansion of a constant composition fluid).

In fact, we see in addition, according to formula (14), that if the

quantities (dQ-dE_dM) and d_ZE do not vary too rapidly, and if the
CT M E

preceding hypotheses are always realized, the polytropic coefficient n,

characterizing the flow of the fluid, has a tendency to increase

constantly with the Mach number W, starting from n=0 for W=O (except

a a

naturally for the special case of the isentropic expansion of a constant

composition fluid).

In a more precise manner, we may observe that if (d_dQ__dM) and d_ZE
CT M Z

are constant within a certain interval, the "energy addition" being

constantly positiye, and the velocity constantly _ncreasing, n increases

constantly with W _ (and even more quickly than W z if the divergence of
a a

the tube d_ZZ is positive, the fraction which appears in expression (14)
Z

in this case being an increasing function of W).

a

If the heat addition or chemical reaction which may affect the flow

and if the divergence of the tube vary in an absolutely random manner,

we may simply confirm that n deviates from zero for W=0 if the flow is
W 2 ifnot adiabatic, and that for W<a, n is less than or equal to y_

/25
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(d__Q-dE_dM)and d_ZZhave the same sign, and are positive, and are
CT M 7

comprised between_W22 and_, if the same quantities have opposite signs

(because n may assume any finite value, positive or negative, if the two

quantities in question are negative simultaneously).

3.1.9.3 Values Correspondinq to W=a

-that for W=a, n occurs, according to formula (14) and in the general

case, as an indeterminate form if the flow is steady state, because the

numerator of the fraction appearing in expression (14) must become zero

for W=a (such that d_WW can remain finite and also consequently d__PP,in
W P

the absence of any acceleration of the flow) and consequently, the

denominator of this same fraction.

Again in the general case of steady state flow, we also may observe

that by virtue of what occurs, the relative variation of cross-section

in the region of the tube where the fluid attains the "speed of sound"

W=a is defined by the condition:

or, if we prefer:

d Z dQ -- dE d31

E CT M

l dZ 1 (dQ dE) ldM.d-Y= c--__ --_ -- M as'

in such a manner that we may set _ = 1 + 6, 6 approaching zero when
a_

W approaches a, and dO-dE dMdE__ -- = 6', 6' approaching zero when W

approaches a. CT M Z

With these notations, we obviously have:

or finally:

e _f

n =-:(1 +_) ( W, hdX ='tO +0 , dx*'+ _ ----_} --f -- * -_-

(15) I _u ¢

n =y zdZ"

] --P-Z

Formula (15) defines the value of n perfectly, as we have seen, d_EZ
7.

having a perfectly defined value for W=a:

d Z dQ -- dE dM

--Z-= CT M'

however on the condition that we are given in addition the boundary of

the ratio of the infinitely small values and ' when w approaches a

24



(and this confirms how and why the value for the polytropic coefficient
n also depends on an indeterminate form for W=a).

In a more precise manner, we may calculate without ambiguity the value
of the exponent n for the polytropic tangent in the cross-section W=a
when we define special conditions for the flow:

-if in fact we assume that the "energy addition" (d___dM) is
CT M

constantly zero during the flow (special case for isentropic flow of a
constant composition gas), we have:

dE

W 2 2;

n=y a2 W2 dX--'r

a" 'r.

/26

If we assume that the cross-section _. is constant (cylindrical tube),

formula (14) also is simplified and rigorously yields:

W2

n = "r-_- ,
thus :

n=_ r for W=a.

We will find these results acceptable for the corresponding special

cases, but it is possible to define more precisely what occurs in the

general case at the moment where the velocity attains the critical value

a. ......

In fact, equation (ii) may be written:

or, for W=a:

where:

W = CT --
az

1

WdX

l+dw E

(W=a)

and equation (12):

dP W _ dW ¢'

_=--_a' W =+'r_ (for W=a).
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Finally, do@is deduced from equation (2') by writing:
I

dp dW d Z z' d E

p -- W _ -- + _ E (for W=a).

/27

3.1.9.4 Values Correspondinq to W>a

-that for W>a, and naturally to the extent where this condition may

be present without the cessation of steady state conditions, the

quantities (dM_d__) and d__ assumed to be different from zero, we see
M CT _.

directly in equation (14) that n always will be greater than or equal

to_ if dQ-dE_dM and dE are positive (however, on the condition that
a" CT M _.

the numerator and denominator of the fraction appearing in equation (14)

are both positive) and that n will fall between Y and yW _ in the
Ja z

opposite case I.

3.2 DIFFERENTIAL°EQUATIONS YIELDING VELOCITY AND TEMPERATURE

The differentialequations above have been established solely in view

of permitting a simple discussion of the development of the local

temperature, velocity, pressure, density or polytropic coefficient, but

in reality they are not suitable for the calculation of the values

attained in each cross-section for these different flow characteristics

(except possibly for the last one), due to the fact that the square of

the "speed of sound" a 2, which appears in all of these equations, is a

dependent variable for both upstream conditions and for the flow of the

fluid between the inlet to the tube and the cross-section considered.

INote: These conclusions clearly appear if we note that

according to formula (14), the polytropic coefficient n may be

considered as formed from the product of _ by a fraction:
a_

in the numerator and denominator of which we insert the same

quantity:

CT M

(which may be positive or negative), such that the fraction

obtained approaches or deviates more or less from unity and that

its product by _ becomes greater than or less than _.
a-
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Thus, it is necessary to proceed directly with a different elimination
to obtain equations capable of actually being integrated, in view of
furnishing the value for the velocity, pressure or temperature in a
given cross-section.

2.2.1 Differential Equation Yieldinq Velocity

An initial method consists of starting with the following four

fundamental equations, in which the quantities W0, E 0, T O, P0, _0,

correspond to the velocity, chemical potential energy, temperature,

pressure and density, when the flow begins, ie. in the cross-section of

the inlet to the tube E0, and where Q represents the total quantity of
heat transferred per unit of mass of the fluid between this inlet cross-

section E 0 and the cross-section E considered:

(3 ') W_ -- \V°2 -- Q + E0 -- E -- H0 -- H,
O

WdW=dQ--dE--dH;

( 1 ) Pd
w dW = -----

P

W2 -- W°2 i dP
'2_ -- .-p-:

(2)

(4)

dE d p dW O.--E +--=-W -=P
!z = p E %%';

P R dP d p dM dT

-_=_qT. p - p ra +-T"

By considering (2), we note that equation (i) may be written:

(16) dP =--_dW.

which is integrated to yield:

(17)
ilPo=P +_ _2dW"

By considering (4) and (17), we then may express the temperature T in

such a manner so as to define the enthalpy H in equation (3'), which

yields. -

H=CT=cMPO_F_ ._dW

R

ZW

/28
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Replacing this value of H in equation (3'), we have:

or:

(18)

W2-- W°2 [ il _2 -- Q + E° E + Ho--C MEW Po--_ _dW
"-- R V- . '

W 2 __ W o,
2 --Q+E°--E+H°

y ZW

y--I p.

Noting that the initial potential energy of the fluid has a value:

W0 2

go = Ho + 2

(and this regardless of its initial physical state) and that the energy

added to the fluid since its entrance into the tube up to the cross-
section Z considered has a value:

I;=Q+_--E,

finally, that W obviously is a function of the abscissa s of said cross-

section Z, we may write (18) in the form:

(19)
%-,

W2 Y "_ Po W Y-T_+y--1 y--1

"lbW

X W ! _ -_-[ ds ---- go--V,

Equation (19) obviously constitutes the differential equation to be

integrated to obtain the values for W in the different cross-sections

Z corresponding to the different abscissa s of the tube, provided_that

we assume that the energy _ added to the fluid is determined as a
function of the abscissa s considered.

We will see later that this differential equation can be integrated

effectively in an immediate fashion in the special case where the cross-

section Z is constant, and then is reduced to an ordinary second degree

equation with W.

3.2.2 Differential Equation Yieldinq Temperature

By considering equation (3'), equation (ii) becomes, by replacing a 2

by _RT and with the same notations as above:
M

(20) W dW W _dW 2(go+ g--CT ) E_ - dM dg]
= W --1---5_g_CT) + M _ =dg--CdT

R

y_T
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or, with all simplifications performed:

(21)

y_T--2(go+g--CT) CdT+d8 y_T--2(y--2)(8o-+_8 )

R C 1 dE 1 dM+ 2 y_T (8o 4- g-- eT).L_-_ds+ _--_-ds = O.

The values for E, _ and M assumed to be known as a function of the

abscissa s, equation (21) will constitute the differential equation to

be solved to find the temperature T as a function of this same abscissa.

3.3 CONCLUSIONS CONCERNING GENERAL CASE OF STEADY STATE FLOW

If we consider the general case of steady state flow in any type of

tube, ie. if we exclude the special cases (which will be studied later)

where the quantities (dM dQ-dE) or d__Z are zero, or if we prefer, if we
M CT E

restrict ourselves to the truly general case where the tube has any

shape and where there is energy addition (or energy loss) in the form

of heat flux, or through chemical reaction, we may summarize or add to

the discussion of the different formulae or equations above by stating

the following conclusions.

/30

3.3.1 Free Variation of Parameters for W=a

When the velocity of the fluid is different from the speed of sound

(ie., in the regions of the tube where W is different from a), thereat

flux transferred to the fluid, the intensity of the chemical reaction

capable of occurring within the fluid, the variation of mean molecular

mass resulting from said chemical reaction, and the convergence or

divergence of the tube, may assume any values without the risk of any

discontinuity in the expansion of the fluid through the tube, even in

the case considered where we require that steady state conditions
prevail, with the sole conditions that the flow must remain laminar and

that the convergence or divergence of the tube d__Z remains finite.

E

3.3.2 Conditions Required for W=a

The velocity of the fluid cannot pass the value W=a, corresponding to

the speed of sound, without the fluid ceasing to remain under steady

state conditions, unless the quantity:

7)
is precisely cancelled for W=a.
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3.3.3 Siqn of Velocity Gradient

For a given sign for the expression in question, the velocity gradient

has the opposite sign as long as the flow velocity is less than or

greater than the speed of sound. In particular, if expression (22) is

positive, the velocity gradient is positive with subsonic flow and

negative with supersonic flow, and the opposite is true if expression

(22) is negative. In particular, it turns out that the velocity

gradient may change sign, both in the subsonic portion and possibly in

the supersonic portion of the flow, if the laws required for the

quantities , M and Z are such that expression (22) changes sign for

velocity values other than W=a.

3.3.4 Condition with Constantly Increasing Velocity

The conditions required so that the velocity may increase constantly

throughout the tube and pass the speed of sound without ceasing to

increase and without ceasing to have steady state conditions are that

the quantity (22) is cancelled for W=a and changes sign when W passes

this value, such that it is always positive for W<a and always negative

for W>a; such that everything occurs, from the point of view of the

variations of velocity (and pressure) and in each cross-section Z, as

if it was a question of isentropic flow of a constant composition gas

in a tube whose divergence, corresponding to the cross-section

considered, was defined by expression (22) with the sign changed.
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3.3.5 Siqn of Pressure Gradient

For steady state flow, the pressure gradient is of opposite direction

to the velocity gradient at any instant and any point, regardless of

local energy addition and the convergence or divergence of the tube.

3.3.6 Variations of Temperature and Polytropic Coefficient

3.3.6.1 Beqinninq of Motion

At the beginning of motion, ie. for zero or negligible fluid

velocities, the polytropic coefficient corresponding to a fluid flow

having the same ratio dD/d_ as the actual flow generally begins by

P

being zero (ie. the flow is isobaric, at least when the quantity

dM_d_Q-dE is found to be precisely zero at the same moment), and
M CT

consequently the fluid temperature begins by increasing if there is

positive energy addition in the form of heat through chemical reaction

(ie. if dQ-dE>0), the heating of the fluid naturally being equal to the

energy quotient which is transferred to it through the specific heat at

constant pressure C, as equation (9') demonstrates.
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3.3.6.2 For

Later, ie. for increasing values of W and W, the polytropic

a

coefficient, or at least the temperature, generally continues to

increase up to the moment where W attains a critical value, which is

even lower when the tube is more convergent, and the energy addition

(assumed positive) is low. For this critical value of W [which is that

which cancels the second term of equation (9')], the fluid temperature

passes through a maximum and the polytropic coefficient would pass

through the value 1 if the variation of mean molecular mass was

negligible [as we readily verify by replacing dO-dE by the value
CT

cancelling the second term of (9') in expression (14)].

In any case, when W attains the value _ the temperature gradient

no longer depends on the energy addition pertaining to the corresponding

cross-section, its value being determined primarily by the convergence

or divergence of the tube, and secondarily by the variation of the mean

molecular mass, such that its sign depends only on the algebraic sum:

dM + dT.
M Z

for this particular velocity value.
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3.3.6.3 For .......

l

Past the critical value _ in question, both W and W remain smaller
a

than a, the influence of energy addition on the temperature variations

of the fluid become negative, such that the temperature of the fluid

definitely decreases if d___ is less than or simply equal to zero
Z

(convergent or cylindrical shaped tube) from the moment that the energy

addition is not really negative.

1 It is obvious that with W always varying between the critical value
in question and one, the hypotheses above always being realized and

d_MM remaining negligible with respect to dQ-dE_d_., the polytropic
M CT _.

coefficient n deviates from one and remains greater than this, while the

pressure decreases, since in each cross-section, it is possible to

write : dP d
__--n -_' ----0 ,
P ._

and

dT dP d p dM ( 1) dP dMT--P P +-_= I-- -P+M' 31



such that if d__PPis negative and dT is negative, n necessarily must be
P T

greater than 1 if d_MMremains negligible with respect to the other
M

terms of the last equation.

3.3.6.4 For

In addition, we may note that for W slightly less than i, n
a

necessarily assumes a value close to y if dQ-dE_dM d_ is not small,
CT M

and that it is only when this quantity must be cancelled so that steady

state conditions remain, ie. when W becomes exactly equal to I, that

a

expression (14) becomes an indeterminate form whose value has been

defined in paragraph 3.1.9.3, formula (15).

3.3.6.5 For

Finally, for W greater than I, the influence of energy addition

a

dO-dE on the temperature variations of the fluid once again changes

CT

direction, as equation (9') demonstrates, such that if this energy

addition is positive, it once again contributes to increase the

temperature of the fluid, and this effectively increases if the

divergence of the tube is not too great [ie., if d__Z is less than .....

the critical value in the cross-section considered and for which the

second term of equation (9') is cancelled].

Under the same conditions, ie. always for W>I, we have already
a

seen (3.1.9.4) that the polytropic coefficient n remains greater than

if dO-dE dM and dZ are positive (energy addition inor equal to_ CT --M Z

divergent tube or energy subtraction in convergent tube) provided that

the numerator and denominator of formula (14) are both positive, while

it becomes less than or equal to ___2_ if the two quantities in question

are of opposite signs (energy addition in convergent tube or energy

subtraction in divergent tube).

In addition, equation (Ii) demonstrates that for Mach numbers greater

than one, ie. for fluid velocities greater than the "speed of sound",

the velocity ceases to increase and decrease even if the divergence of

the tube becomes sufficiently small with respect to the assumed positive

energy addition, the pressure gradient naturally being reversed in this

case and the temperature becoming increasing.

!3_/3
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3.3.7 Influence of Mass-Flow on Upstream-Downstream Pressure Difference

It is nearly obvious, and easy to verify in these cases, that all

other things being equal, the total pressure difference between the

upstream cross-section and any other section of the tube increases

rapidly with the mass-flow _ and naturally also the velocities W
realized in each section.

From equation (I) W dW=_d_PP and equation (2) _=ff 7.W, we deduce in fact:
P

(16)
dP = -- -_ dW,

Z.,

such that if we designate the upstream pressure by P0, we have:

P = Po--_ _dW,

and that the pressure difference between the upstream section and any
other section of the tube has the value:

(24)
ilpo--P=_ _dW ,

an equation which yields the value of P-P0 without difficulty, once the

velocity variation law is determined, for example through integration

of equations (19) or (20) and which already demonstrates unquestionably

that (P-P0) increases, all other things being equal, with the flow _.

Equation (24) also may be transformed by considering equation (ii),

in such a manner to demonstrate even more clearly the influence of the

flow on the pressure difference required to obtain this flow.

By replacing dW by its value drawn from (ii) in equation (24), we then

obtain: IW a2 [dQ _TdE dM d_]Po-- P=_ -_a 2_w 2 M --

or by considering (2):

/3_/4

3.4

-- = _-o a" W _- _ M "

PRINCIPAL SPECIAL CASES PERTAINING TO STEADY STATE FLOW

The discussion in paragraph 3.3 above voluntarily has been limited

to the "general case" of steady state flow, ie. it corresponds to

exclusive hypotheses for two special cases which we are now going to

study, and which are that of isentropic flow of a constant composition

gas on the one hand, and that of any steady state flow of a variable

composition gas receiving energy (either directly in the form of heat,

or following a chemical reaction) in a constant cross-section pipe on

the other hand.
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3.4.1 Special Case for Isentropic Flow of Constant Composition Gas

In this case, equation (3) for energy conservation is integrated

immediately, as we know, to yield:

( 2 5 ) W2 -- Wo°" -- H o- H.
2

In addition, equation (i) is integrated, as we know, even more

readily, on the condition of assuming that the ratio of the principal

specific heats of the fluid may be considered as constant, ie. that we

may represent the isentropic expansion by the Poisson formula:

which yields:

P
__ Cre,

p_

(26) [<;W2--Wo _ y R P

2 y__l_To I-- _ .

Formula (26) totally accounts for variations of kinetic energy as a

function of pressure differences, and the temperature variations

themselves are perfectly defined as a function of these same pressure

variations, and accounted for by the Poisson formula through the well

known relationship: _--i

However, these formulae do not yield any precise data on the nature

of the cross-section variations as a function of the pressure variations

or vice versa; however, it suffices to refer to equation (ii) to

observe that it reduces in the case considered to:

(ii') dW --a 2 dE
W -- a2 -- W 2 E '

which clearly demonstrates that the fluid velocity effectively increases

only for decreasing cross-sections, for fluid velocities less than the

"speed of sound", for increasing cross-sections, for velocities greater

than the "speed of sound" and that the cross-section must pass through

a minimum for W=a, as demonstrated previously by Laval.

We also verify that equation (14) reduces in the case considered, and

regardless of the cross-section of the tube considered and the

corresponding divergence or convergence, to n=_, which returns to the

Poisson law [formula (14) being valid for any fluid obeying the

Mariotte-Gay-Lussac law and having constant specific heats].

If we assume a priori that the tube is first convergent, then

divergent (Laval or venturi tube), we see that:

/35
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-if the velocity W constantly remains less than the "speed of sound",
it will begin by increasing in the convergent portion, then decreasing
in the divergent portion, conforming to equation (ii'), the pressure
commencing by decreasing in the convergent portion and once again
increasing in the divergent portion, conforming to formula (26), such
that if the speed of sound is not attained in the throat of the tube,
it cannot be reached subsequently;

-if on the contrary the velocity exceeds the value a corresponding to
the "speed of sound", we see that it must attain this in the throat of
the tube and'that, conforming to formula (ii'), it continues to increase
in the divergent portion of the tube, such that the pressure never stops
decreasing and the velocity never stops increasing throughout the entire
length of the tube.

Of course, it is easy to define the boundary conditions which separate
the two flow regimes described above.

If the "speed of sound" is reached in the throat of the tube, the
corresponding temperature T_ obviously is defined by equation (25) where
we may assume that W0 is negllglble, which ylelds:

I yR
I-_-- Hc = C (To-- To) = 2 a_ = _T_,

or: : -Y(C -- c) Tc = C (T o -- To)
2

where, by simplifying:

and:

T (r--I + 2)= 2"l%,

T 2

lo-r+ 1'

or else:

Now, the sonic flow in the throat corresponds to the condition:

B

," = pc Zc Wc pc Zc a = Po_ £e y= w _Too,

or:

where:

1

/ 3__e

(27) T

R (2) iWo:=_-r ,_'ro 7-4--i
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or :

(28)

Y

The desired condition necessary and sufficient for the "speed of

sound" to be attained in the throat of the tube and for the supersonic

regime to be "initiated" in this thus is that the velocity W or the flow

# may not be less than the values defined by formulae (27) and (28), the

value of # obviously capable of varying for the same initial temperature

T O of the fluid, depending on the value of the upstream pressure P0"

Obviously it is useless to pursue the study of the special case of

laminar isentropic and steady state flow in the case of a constant

composition gas, since this study in reality has no other objective than

to note the possibility of rediscovering known details of this flow from

the general formulae established above.

3.4.2 Special Case for Steady State Flow With Heat Addition For

Variable Composition Gases in Constant Cross-Section Tubes

Within the same framework as for the study of the general case, we

will begin by studying the nature of the flow in order to then proceed

to the effective determination of the characteristics of the gas and its

velocity in each cross-section.

/3_/7

3.4.2.1 Differential Study of Flow Velocity ........

3.4.2.1.1 Study of Velocity Gradient

In the special case considered, equation (ii) simplifies to yield:

(ii") dW a2 [dQ--dE d'M_
w -a,--w, L CT M A"

Considering that as a general rule the term dQ-dE, representing the
CT

energy addition largely overrides the term dM pertaining to the

M

variation of mean molecular mass, we see in equation (ii"):

-that a positive energy addition increases the velocity of the fluid,

when this is less than the "speed of sound", and decreases it when it

is greater than the "speed of sound";

-that the "speed of sound" cannot be attained unless the steady state

condition ceases to exist except in a cross-section where the energy

addition is zero (or more rigorously the quantity d_d_r___d_MM). If this
CT M

36



was not true, two shock waves of opposite directions would be produced,
as we have demonstrated in the first part pertaining to variable state
conditions, which would destroy the steady state character of the
motion, so that at least this motion would be accelerated or decelerated
depending on the precise relationship, also defined in the first part:

t w dt ;

-that the fluid velocity can only continue to increase beyond the

"speed of sound" if in the corresponding region of the tube there is

energy subtraction (or more precisely a negative value for the quantity

dO-dE-dM) ;

CT M

-in addition, that we may transform equation (ii") by multiplying both

terms by _ (to make the differential for the kinetic energy appear) and

by expressing this quantity from equation (2), which yields:

,(ii'") d. 1----= W _ p_ E _ -- .

a 2

We see from this equation that for the same value of the Mach number

W, the increase in kinetic energy corresponding to a given energy

a _

addition is practically proportional to _"-, which allows us to believe

that this increase in kinetic energy is a rapidly increasing function

of the mass flow per unit cross-section _, with equality of the Mach

number. E

3.4.2.1.2 Study of Polytropic Gradient Present in Each Cross-Section

In the special case considered, formula (14) obviously reduces to:

dP

p \\-2

n--d_-- z a""

9
such that:

It turns out that the fluid flow commences by being substantially

isobaric, corresponds to a polytropic coefficient which increases

proportionally to the Mach-Sarrau number, becomes isothermic for W-- a

if the variation of mean molecular mass d_MM is zero or negligible,

M

becomes adiabatic for W=a, and corresponds to a polytropic exponent

greater than _ (ie. with expansion including a more rapid temperature

drop than with isentropic expansion), while W becomes greater than a.

/
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3.4.2.1.3 Study of Temperature Variation

It clearly could be deduced from the variations of the polytropic

coefficient, if we can absolutely neglect the variation of mean

molecular mass, that under these conditions the temDerature would

commence by increasing, would attain its maximum for W = a_and would

then decrease more and more rapidly while W would continue to increase,

ie. up to the speed of sound, if the energy transferred to the fluid is

sufficient for this to be attained, and even beyond this, if the energy

is provided to the fluid in the remainder of its flow, in such a manner

that this could become readily supersonic.

In reality, and in a more precise fashion, we see in equation (9), by

setting d__E=0, that the temperature maximum is attained for the value

W, slightly different from -7= defined by the relationship:
a VY

or:
-_ ------ _ (dQ -- dE) {-_--I ,

3.4.2.1.4

a2 a 2 dM

W _-7-M dQ--dE"

Pressure Variations Throughout Tube

Equation (24) obviously is simplified and integrated for a constant

cross-section Z, yielding the following relationship, deducible from a

direct application of the theorem for projected quantities of motion:

(24,) P = (w-- w0)

This equation demonstrates in a clear fashion that in a constant

cross-section tube, the pressure varies linearly as a function of the

velocity and in opposite direction from this.

It also demonstrates that the pressure difference required to produce

an increase in velocity W-W 0 increases proportionally to the mass-flow

per unit of cross-section and this obviously has considerable

Z practical significance.

This last conclusion must be reconciled with what has been stated at

the end of paragraph 3.4.2.1.1, and according to which the increase in

kinetic energy is an increasing function of the mass-flow per unit of

cross-section _, with equality of Mach numbers. From that, this

mass-flow per unit of cross-section now would appear as a favorable

factor in the obtainment of a large kinetic energy for a small energy

addition during the expansion of the fluid and an unfavorable factor in

the obtainment of a large kinetic energy for a small pressure

difference. The direct calculation of the velocity W produced will

/3_

38



confirm and precisely define this point of view, as we will see.

3.4.2.2 Calculation of Velocity Produced in Each Cross-Section

It is easy, in the special case considered, to calculate directly the

velocity W produced in a given cross-section, and this regardless of the

physical state of the fluid in the tube inlet cross-section.

In fact, if we designate the total quantity of heat received per unit

of mass of the fluid by Q, from the upstream cross-section corresponding

to the initial conditions P0, 0, T.0, _^,_ H^,v E^u and W 0 up to the cross-
section considered and the potentlal cnemlca± energy corresponding to

the state of the fluid in this second cross-section by E, we may write:

W'--WoZ
2 -- Q + (_ " E) + H o _ H,

such that by considering

(w w0),

= pXW = poeWo,
and :

P_R
p--_T

(if we assume that the given cross-section considered is sufficiently

far from the inlet cross-section so that the fluid has become entirely

gaseous) it becomes:
•

M Po--_ (W--Wo) -_

T= _ _W '

/40

where: I ( )_l,) --.Q+Eo--E+Ho -CMEW 'Po--_ \V_Wo '
_ R V- _

or: %%72_ Wo2 y
o --Q+E0--E+ H, -,_1
-- i

or even:

) F_ w°°W °- y _)2-___._C_f\V po+_Wo __ Q __ (Eo__ E) __ Ho _rU
y--I + u.-,:--I __ -

From this, we may suggest:
, Wo"

I-;o= Ho _.'-:7
J

(initial potential energy of the fluid), and:

I:=Q+Eo--E

= 0.
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(energy provided to the fluid between its entry into the tube and the

section considered).

With these notations, the general equation yielding the velocity W in

the case considered for a steady state flow in a cylindrical tube

assumes the simple form:

y--1 2 +--/--Yy--I Po+. Wo W+8o+6=0 '

an equation in which it should be noted that the quantity Po + _Wo,
Z

which defines the conditions for entry of the fluid into the tube, is

an unvarying value which is preserved throughout the entire tube and

which we may represent for simplicity by _.

Equation (30) being a second order equation (for reasons which will

be given later), it obviously only has a solution if its discriminant

is positive, ie. if:

or:
>o,

(31)
y_ Z t _

g°+$<2(y+l)_ z"

We already see with condition (31) that the flow is not possible under

steady state conditions unless the total quantity of energy _0 + _ is not
too high with respect to the value of the unvarylng quantity defining
the initial conditions for the flow: .......

/

= Po + _ Wo-

Inversely, we also may state that the flow is only possible under

steady state conditions if the value of the unvarying quantity _ is

sufficiently high with respect to the total energy_0+_ .

We will better comprehend the actual meaning of the relationship

defined between _ and (_0+_) through the condition of positive
determinant if we once again state the problem, as we have constantly

done during the present study, by assuming that the Mariotte-Gay-Lussac-

Avogadro law is applicable to the fluid (assumed to be gaseous after its

entry into the tube).

4O

With this hypothesis, we may in fact write:

Wo 2 \Vo2 R \Vo2
(y--1)_o----(y--l)y+C(y--1)To=(y--1) ._ +[.qTo=([--1)7 +yX-PoW o.

Such that equation (30) becomes:

(32) o+ Wo w+2(.:--l)

× Q+Eo--E+ -XPoWo--' -- =0.
7--1_



The discriminant corresponding to this new form of the equation thus
is written:

\_- Q + E0--E+y--_ _

or:

or else:

2C2Po 2 Po
A' = yz--__2 yX_ __ Wo + Wo2__ 2 (:,z 1)(Q + Eo--E),

ZP°--W o __2(_,2__I)(Q+Eo__E),
A'= y --_--

or even, by designating the "speed of sound" by a02 in the inlet cross-
section:

=\W ° W o --2(y' 1)(Q+E o-E),

such that the condition for reality of the roots of equation (32), and

thus the possibility of steady state flow, may be written either as:

(33)

or:

V, _< 1 (ao_--Wo_)2
--Wo 2 2(y2--1)

(34) <ZR _)2

We see on both equation (33) and equation (34) that for a sufficiently

small mass-flow per unit of cross-section M or, which turns out tobe

Z

the same, for a sufficiently small initial velocity W 0 at the tube inlet,
the steady state flow in a cylindrical tube will still be possible, even

if the total ener_ _ is considerable.

!4!

3.4.2.2.1 Discussion of Possibility of Condition of Steady State Flow

With Constant Cross-Section Tubes

According to the discussion above on the subject of the variations of

the velocity W, it is easy to account for the fact that we never may add

a total quantity of energy to the fluid greater than that which is

precisely necessary to bring the velocity of the fluid to the value a

corresponding to the "speed of sound" in the cross-section considered.

In fact, we have seen that once the "speed of sound" W=a is attained,

it was no longer possible to increase the velocity of the fluid except

by taking energy from it and that we could no longer transfer energy to

it for velocities less than a without increasing its kinetic energy,

such that the algebraic sum of the quantities of energy which we may

transfer to the fluid cannot be less than or equal to that which brings

the velocity to its value W=a.
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This deduction is also easy to verify with equation (32).

In fact, the condition A _ 0 is satisfactory, as we have seen from
formulae (33) and (34), for an even greater total energy when A is
smaller, such that _ is maximum (for a given unvarying value _C) for
/_=0, ie. when equation (32) has a double root.

The value of this double root may be calculated easily by writing:

W= Y Y
_+1 --_+1 +Wo -_+1 +Wo

where, considering the relationship:

Po--P =-_(W--Wo) ,

so that:

(T + 1)W = YP _ W--Wo
7W 4 x pw +Wo;

_" 1,
Z pW --

such that we simply have:

(T+ 1) W-- YP
pW +W,

or:

\V" -- Y p -- a2
o

Thus it is verified that if the quantity of energy which may be

transferred to the fluid for the given values of M, P0 and W0, or more
Z

simply for the unvarying _, is limited, because this quantity cannot

exceed the value for which W becomes equal to the speed of sound a (even

if W can be raised considerably above this value).
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3.4.2.2.2 Selection of Root Correspondinq to Actual Flow

From the preceding discussion, it is obvious that with equations (30)

and (31) assumed to have their actual roots, the smallest of these is

attained if the positive quantity of energy _ is provided to the fluid

without being exceeded, while the largest is attained when we first

provide to the fluid the quantity of energy just sufficient to reach the

sonic velocity W=a [ie. that which defined equations (33) and (34)] and

when we then remove the quantity of energy required so that the

algebraic sum of the quantities provided is equal to the value _ which

defines the two roots considered.
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We have seen that it is indispensable if the speed of sound may be
exceeded, without motion ceasing to be steady state and without the
value _of the unvarying quantity (_ P0 + W0) being modified, that the

energy addition is cancelled and changes sign when W passes the value
a.

An additional verification, due to the fact that the smallest root of

equations (30) and (31) is the only one to be considered when the energy

is added constantly until we attain a specific value _ , but without

exceeding it, also may be derived from the fact that for an infinitely

small energy addition, we obviously have W=W 0. In fact, this is found

to be precisely true, as we will see, for the smaller of the two roots,

when we set _=0.

It is also obvious that is the energy transferred to the fluid

increases progressively from 0 to _, it is always the same root which

yields the actual velocity of the flow, and that we may not pass from
one root to the other unless we attain in the actual flow the quantity

of energy which corresponds to the double root W=a.

In a more precise fashion, we may place the roots of equation (32)

into the form: (_ ) // _ )2
W_---

yq-1

such that the smallest root assumes the following form for_=0:

¥ Wo + Wo ......
W1 -- y-'k 1 --=-W°"
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3.4.2.2.3 Ratio Between Increase of Kinetic Enerqy Obtained,

Enerqy Transferred to Fluid and Mass-Flow Unit

It suffices to note that equation (ii') may be written:

,a _ - a_-- w_ w' I_ CT- --q-J = a_-- w_ o__ L CT .7i-A

to predict that under subsonic conditions, the energy added to the fluid
contributes even more to increase its kinetic energy when the gas

velocity has a higher value, and that consequently the total increase

in kinetic energy must represent an even smaller fraction of the energy

transferred to the fluid, all other things being equal, when the unit

flow M itself is small.

We have seen already, and it has been verified, that under supersonic

conditions it is on the contrary by deducting energy from the fluid that "

we may increase the velocity (this deduction also contributing to

increase the kinetic energy of the fluid with a coefficient whose value
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deviates from infinity for W=a and decreases as W increases).

In summary, we see that the energy transferred to the fluid during its
flow has an influence on its kinetic energy, which depends on both the
mass flow M and the Mach number W corresponding to the cross-section

E a
considered and that this influence is even more intense when the mass-
flow per unit of cross-section is higher (with equality for the Mach
number), and that the Mach number realized at the moment considered in
the fluid flow is closer to one.

3.4.2.3 Influence of Mass-Flow Unit and Mach Number on Pressure

Difference and Density

Equation (25') already demonstrates that the difference in pressures

existing between the two ends of the tube must increase rapidly with the

unit flow _, given that the velocities W and W 0 also cannot fail to

increase with this flow.

In a more precise fashion, we also may transform equation (25') by

considering the expressions for flow so as to place it in the form:

(25")
P°--P ----E'= --,7o "

This demonstrates that the difference in pressures in question must

increase more rapidly than the square of the unit flow, the density

difference 0- obviously increasing during the expansion, such that
also increases.

It also remains true that the maximum velocity attained by the fluid

is less than the "speed of sound" or that the supersonic conditions are

found to occur on the downstream side of the tube, through subtraction

of heat or energy from the fluid. In fact, we may observe that at any

instant, n being the exponent of the polytropic tangent, we have:

dp 1 dP

_0 --nP

and, since the velocity can increase only on the condition that the

pressure gradient b_PP is negative, by virtue of equation (24) dP=-_dW,
bs E

we see that p decreases constantly along the flow, with the single

condition that the velocity itself increases constantly (since the

exponent n of the polytropic tangent is always positive).

Considering the two preceding equations and the expression for the

polytropic coefficient previously obtained:

\Vz

n = y-_;
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we also may obtain a relationship which more perfectly defines the
variations of the density during the flow, by writing:

(35) ldp 1_ _ a 2
p dW-- n X -- Z¥ W 2"

We see in formula (35) that the derivative for the relative variation

of density with respect to the velocity i dP is both proportional to

p dW
the mass-flow _ and inversely proportional to the Mach number

Z

corresponding to the cross-section or to the flow phase considered.

We also may express more directly the density variation as a function

of the velocity variation by juxtaposing (25') and (25") in the form:

such that:
+'(,,)po- p

(36) 1 1 Y_
- -- - (W -- Wo)

12.

(relationship which is derived directly from the continuity equation

#=pZW, # and Z assumed to be constant), which demonstrates that the

difference of the inverses of the specific downstream and upstream

volumes is proportional to the unit mass-flow, with equality of velocity

increase.

With respect to the pressure difference, we may note that it may be

placed in the form:

which demonstrates that, with equality of the Mach number, it

proportional to _/£_, thus to the density _0 present in the upstream

section. _W 0

is

3.4.2.4 Comparison Between Sonic Velocity Obtained With Cylindrical

Tubes and Sonic Velocity Obtained Throuqh Isobaric Combustion

Followed by Isentropic Expansion

In the case of the cylindrical tube, we see in equation (30) that the

product of the roots, thus the square of the double root, has the value:

,_-/---I(_; _ _:o).
W1W2 = \\'_:-y+ 1

In the case of isobaric combustion followed by isentropic expansion,

we also have, for the same initial temperature T O and for the same total

energy provided to the fluid_, a combustion temperature:
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The temperature at the throat, after isentropic expansion, thus will
have the value:

('ro + -
'\ y+ 1"

The fluid velocity at the throat, after isobaric combustion and

isentropic expansion, thus will have the value:

(g) 2 y--l( _) y--l( _)o'=y_ _+_ y+l--2Cy---_ To+ =2_--_ g+go-- •

The "sonic velocity" produced from the same initial temperature of the

fluid and for the same total energy addition , for a cylindrical tube

and for isobaric combustion followed by isentropic expansion, thus is

the same if we assume that the initial kinetic energy W_02 is
2

negligible in the case of the cylindrical tube (given that it is assumed

to be zero with isobaric combustion followed by isentropic expansion).

For the same reasons, the temperatures occurring in the sonic cross-

sections are substantially the same for the same initial temperature T O
in a cylindrical tube and with isobaric combustion followed by

isentropic expansion.

At first glance, this result may be surprising since the temperature

attained during the transformation is lower in the first case than in

the second, but we will see on the contrary that the upstream pressure

is lower with isobaric combustion followed by isentropic expansion than

with expansion with combustion in cylindrical tubes.

3.4.2.5 Comparison Between Pressures

3.4.2.5.1 Comparison Between Upstream Pressures Producing the Same

Sonic Velocity With Cylindrical Tubes and With Isobaric

Combustion Followed by Isentropic Expansion

In the case of the cylindrical tube, we obviously have:

(37) ]po-- p = _ [,/o Y-- 1 (t', + t:o)--W o
kV'y+l

an expression in which_+_0 is determined by the double root condition:

y2X2 ( _ )2t;+go---" 2(y+l) v..o Po+ Wo •

On the other hand, with isobaric combustion followed by isentropic

expansion, we have:
Y

Po (¥ + 1'__-1
g=\ 2 ) '

/4__2_7
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where:

(38)
Po--P= o\y+i/ _ --I =Po I

In principle, formulae (37) and (38) permit us to compare the upstream

pressures corresponding to the two cases considered, but it is not

necessary to discuss them in order to be able to confirm that the

upstream pressure is stronger in the case of the cylindrical tube for

the same pressure P in the downstream sonic cross-section.

In fact, we have:

ilPo--P= _._dW

in both cases, and since the cross-sections Z corresponding to the same

terminal cross-section at the throat inevitably are stronger in the case

of isentropic expansion in a convergent tube, the difference P0-P

corresponding to the same final sonic velocity W (and necessarily to the

same initial velocity W0) is inevitable lower for this type of tube, all
other things being equal.

Finally, we see that while the initial temperatures resulting in

substantially identical sonic velocities are the same for both

expansions, the initial pressures are different, and consequently the

initial entropies as well.

This last point permits a better understanding of how the same energy

addition results in substantially the same increase in kinetic energy

for two thermodynamic flows having the same initial temperature and

nearly the same final temperatures, and very different maximum

temperatures.

The entropic representation of these flows on the same diagram in

figure 2 also demonstrates that the areas underlying the two

corresponding curves may be very similar, despite the notable

differences of the maximum temperatures in question.

3.4.2.5.2 Ratio Between Upstream Pressures Correspondinq to the

Same Propulsion Force Per Unit of Sonic Cross-Section

If we consider a cylindrical tube and a convergent tube with

isentropic expansion, both operating under sonic conditions and having

the same sonic cross-section, we can calculate easily the ratio of the

corresponding upstream pressures.

Esnault-Pelleterie has established in fact that for a tube with

isentropic expansion, limited to its convergent portion, the static

propulsion force is:

F = Zc (y + 1) Pc,
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Pc being the pressure at the throat and Zc the corresponding cross-
section.

(c)
(c,)

T

To

(C)

(c'._.)

5s_so

Figure 2.

Isobaric, then adiabatic flow.

Flow occurring in a cylindrical tube for a final temperature and

sonic velocity nearly identical to the final temperature and

sonic velocity of (C).

Thus, in this case the upstream pressure has the following value:
_LY _LY

\ 2 /. -_y+1 -- •
On the contrary, for the cylindrical tube, the upstream pressure a

obviously has the value:

PO = F
S

For the same propulsion force value F and for E=Z¢, we thus have:

(39) _l_Y I

Po (/ 2 _Y--' (" 1 "_Y----_ Y
P - (Y+ _)\-7--i-ql" = \y--i-T/ ('2.)_---=_.

Numerically, the pressure ratio in question obviously depends on the

value of _.

By settingy=l.3, we find:

P_0 = 1.26
P
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3.4.2.6 Thermal and Enerqy Outputs Obtained With Each Cross-Section

To obtain a value for the ratio existing between the increase in

kinetic energy and the energy dQ-dE=d provided to the fluid, it

suffices to observe that in the case considered for steady state flow

in a cylindrical tube, we have on the one hand:

or:
a2 =

n

and on the other hand, we may write: .

1 1R p_T_l p y_l

CT-- CM P y P -- a_

Considering these relationships, equation (ii) in fact may be placed

into the following form:

(40)

It then is sufficient to recall that n increases constantly with W (by

virtue of the expression above), and we see that the "instantaneous

thermal yield", defined by the ratio of the energies in question, would

be zero for W=0 if dM was negligible and with the same hypothesis_ -_

M

increases constantly from zero to more than infinity when W increases

from zero to a.

If we neglect the variation of molecular mass dM, in fact we
M

obtain for the expression estimating the yield in question:

(41) d(-_ / T--1 y--I

_t-- d_ _ -- a 2
!--1 ----1
n W _

If W exceeds the "speed of sound", we have seen that it becomes

necessary to subtract energy to obtain an increase of velocity and

kinetic energy in the fluid, such that it becomes absurd to speak of an

"instantaneous thermal yield" corresponding to the definition above.

In any case, it must be recalled that besides the energy provided to

the fluid during its flow, on the upstream side it receives energy P--0

f0
and on the downstream side returns energy to the medium equal to P.

P
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Considering this remark, it is logical to consider an "instantaneous
thermal yield", in the denominator of which there appears the sum of the
energies provided to the fluid in the form of heat and work, and which
consequently can be written:

'i\2/

thus we have:Noting that P=la 2,

e¥
d8 y--1 d8

(42) "_e= '_'

0' T

or else, if we neglect the variation of mean

consequently if we consider R as a constant:

M

(42') St_ y--1 dg

X_n I dS --_dT

molecular

• i

mass and

We see in formulae (42) and (42') that the "instantaneous energy

yield" becomes less than the "instantaneous thermal yield" from the

moment when the temperature of the fluid has exceeded its maximum (ie.

as we have seen and will see later, from the moment that W exceeds the

value _/_in the case where the variation of mean molecular mass is

negligible), while it is higher than the "instantaneous thermal yield"

for values of W comprised between zero and the critical value in

question, a .......

For W=a, we also have n=y, and d_ must be zero so that the motion

remains steady state, such that the value of the "instantaneous energy

or (42'), but we mayyield" can only be calculated by formulae (42)

write directly: /IVZk

and consequently, if we still neglect dM:

M

:t{ e

da--_dT dg-- dT

C y

--C--e-y--I "

Finally, we see that, to the extent that we can neglect the 'term d_MM

M

pertaining to the variation of mean molecular mass with respect to d__,

dT

the "instantaneous energy yield" realized during steady state conditions

in a cylindrical tube begins at a very low value for W=W 0 (theoretically

zero for W=W0=0), increases with W so as to attain the value of 1 for
a

and attains the value _ for W=I.

5O
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Thus it is possible to define algebraically the value for the

instantaneous energy yield in question, on the condition that the

variation of mean molecular mass can be neglected, and such that this

yield is expressed only as a function of the Mach number W reached in

the cross-section considered, a

If we neglect dM, equation (9) in fact may be written:

M

(42) R --la z W 2
T a2_W2"

Thus, we have: seen(T--I) d8

F W_'ld8 I- Y--
L y a2--WZJ

And since we have found that n=y__ after all reductions are made
it becomes: "a _

(43) W 2

a---T (T -- 1)

_" _ 1 W 2"

+ (v--2)

Formula (43) permits us to discover the values for the instantaneous

energy yield above calculated for W:_and for W=a. In addition, we see

that said instantaneous energy yield increases with W if the velocity

W exceeds the value a (and theoretically would tend to approach _-i

for infinite W). y-2

a

3.4.2.7 Temperature Variation Obtained During Flow

We see that if we neglect the variation of mean molecular mass, we may

place the temperature derivative with respect to the energy addition

in the simplified form (42), which may be written:

(42') dT la"_TWZ !
d---g-_C a_-W 2 '

a relationship which confirms that the temperature increases with

a a

until W has attained the value -7= , that the derivative d TT becomes
VY dg

infinite and negative for W=a-£ , and infinite and positive for W=a+£,

and that its absolute value then decreases when W increases, if the

a

conditions present permit the fluid to exceed the "speed of sound"
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(which assumes, as we have seen, that it begins by having subtraction
of energy).

In addition, the overall expression for temperature already has been
calculated (see §3.4.2.2) to obtain the second degree equation which
yields the values of W and may be placed into the form:

1
(44) T --

C--c

The temperature thus is known at any point of the flow, as well as the

velocity and consequently also the density.

If we wish to determine the maximum value T m for said temperature, and

if we assume that we can neglect the influence of the variations of mean

molecular mass, obviously it is sufficient to set W-- a in equation

(44), which yields: _y

Tm -- C--c

or after all reductions have been performed, and since T=Tm:

Tm--4(C__c) _ o+W .

This last formula obviously allows us to compare the maximum

temperature occurring under steady state conditions in a cylindrical

tube and the maximum temperature occurring for example with isobaric

combustion followed by isentropic expansion.

In fact, if we consider the instant of passage through the "sonic

velocity", we find the temperature T s in the case of a cylindrical tube

by inserting this value for the velocity into equation (44):

R Wo],

where, since T=Ts:

4 ]1 R Z

where finally:

T,-- c(y__l)(l+y)_ _Po+Wo •

Since obviously we only can compare flows yielding the same "sonic

velocity" in a truly valid fashion, it is obvious that the ratio of the

maximum temperatures to be compared has the value:

Tm

T Y +I
2

Now, according to the preceding:

/s!
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(45) Tm (y + 1) 2
Ts 4 y

such that the maximum temperature attained in a cylindrical tube

regulated to provide a given "sonic velocity" (ie. a given temperature

T s in the cross-section where this velocity is attained) on the one hand,

and the maximum temperature required to produce the same "sonic

velocity" in a tube with isentropic expansion on the other hand, are

given by the ratio:

(46) R = ¥ + I
2y

It is useful to note that by virtue of formula (45), the ratio between

the maximum temperature attained during steady state conditions in a

cylindrical tube and the temperature occurring in the cross-sections

where the "sonic velocity" is attained during the same flow, is

independent of the characteristics of the fluid in the inlet cross-

section of said tube (naturally, with the sole restriction that the

energy addition and the initial characteristics in question must

correspond to obtainment of a "sonic velocity").

4__. CONCLUSIONS

From the preceding study, in our opinion it is possible to directly

formulate the following conclusions which we will attempt to complete
with a last observation.

/55

4.__..!1VARIABLE STATE CONDITIONS

4.1.1 Free Selection of Parameters for Velocities Other Than

"Speed of Sound"

To the extent that the fluid flow can be considered as laminar, one-

dimensional and free of viscosity, it appears that we may arbitrarily

set, regardless of the cross-section considered, the mass-flow _, the

cross-section Z and its gradient d_EE, the possible addition of heat _Q,

ds bs

the possible potential chemical variation ___, the corresponding

_s
variation of mean molecular mass __MM and the acceleration of motion __WW,

_s _t

except possibly in the cross-section where the velocity of the fluid

would be equal to the "speed of sound"

a = ¥_T.
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4.1.2 Relationship Required for Flow to Retain Finite Velocity
Gradient and Pressure Gradient Even in Cross-Section Where

Fluid Attains "Speed of Sound"

or more simply:

In a cross-section where the fluid velocity has attained the critical

value / R a precise and unique relationship must exist between the

a =_¢/y_T,
diffel_n5 parameters considered above such that the velocity gradient

and pressure gradient retain finite values (or if we prefer, such that

the representative curve for these gradients as a function of the

abscissa do not display a reflection point with tangent vertical to said

cross-section), said relationship being written:

1 _ _W dQ_dE a _ 1 dM a2 _ dZ

y--lpZ _l + dl 7--1Mdt y.---- 1 p Z_ ds -0'
..

pz _t +(_-- dt _+_ =o.

While the relationship in question is not satisfactory, the

peculiarity which appeared for the cross-section considered in the

representative curve for the velocity gradients produces an analogous

peculiarity for the representative curve for pressures as a function of

the abscissa, from which comes the appearance of two shock waves of

opposite directions which begin in said cross-section and are propagated

toward the ends of the tube and modify the boundary conditions (in a

manner which obviously depends on the conditions under which the tube is

supplied with gas and those under which the gases which enter are

evacuated and which determine the subsequent development of the

phenomenon). _.... :

4.1.3 Siqn of Velocity Gradient as Function of Principal Parameters

for W<a or W>a

In the regions where the fluid velocity is less than a, an energy

addition tends to increase this velocity, while there is a reduction of

the cross-section which acts in the same way, given that the action of

these two factors is even more significant as the fluid velocity

approaches the value a.

In the region where the fluid velocity is greater than the speed of

sound, an energy addition will influence this through a reduction of the

fluid velocity, with an increase of the cross-section of the tube

through an increase of the fluid velocity.

In any case and from a more general point of view, the velocity and

pressure variations occurring for a given flow in a cross-section

where the gas attains the conditions W, M, P, T, are the same as for an

isentropic flow of a constant composition gas traversing the same cross-

section Z under the same conditions, but for a divergence of the tube

(corresponding to this cross-section) equal to:
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d Z dM dQ -- dE
Y ÷ .M CT

4.2 STEADY STATE CONDITIONS

By application of what has been said with respect to variable state

conditions, but this time concerning the special case of steady state

conditions, the values of mass-flow #, cross-section Z, its gradient

dE, the possible heat addition dQ, possible variation of chemical
ds ds

potential energy d__ and possible corresponding variation of mean
ds

molecular mass dM, may be imposed regardless of the cross-section
ds

where the fluid has a velocity different from that of the "speed of
sound":

,=_/y _T.

a,

equivalent relationships:

or:

In the cross-section in question corresponding to the "speed of sound"

the same quantities on the contrary must satisfy one of the two

1 dQ--dE (MdM W dE)CT dt - _ + -_-_ = 0

1 dQ--dE

CT ds (_ dM !azh-_ +Zds) =o,

such that the steady state condition can be maintained.

4.2.1 Sign of Velocity Gradient, Location of Throat and Convergence

or Divergence of Tube in Sonic Cross-Section

Under steady state conditions, the acceleration of the fluid depends

only on the sign of the difference (a-W) and that of the quantity

(dO-dE____dZ).
CT M Z

It is positive if both factors have the same sign, and negative in the
opposite case.

In addition, as a consequence of the information discussed in

paragraph 4.2 above, we see that the throat of the tube does not

correspond to the "sonic" velocity W=a unless the quantity (dO-dE_dM)
CT M

is zero in the cross-section where this velocity is attained, and that
the tube on the contrary must present a perfectly defined convergence or

divergence 1 dE in the cross-section where the velocity W attains
ds

the value a if the quantity in question is different from zero.
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Also, as a consequence, the fluid velocity cannot continue to increase

beyond the value W=a under steady state conditions unless the quantity

(dQ-dE dM dZ) becomes negative in the corresponding cross-sections,

CT M Z such that for a constant cross-section tube, it is

necessary to subtract energy from the fluid (or more precisely to make

d Q__dM negative) in order to continue to accelerate the fluid beyond

CT M the "speed of sound".

4.2.2 Variation of Polytropic Coefficient as Function of W/a

If we except the case of isentropic expansion of a constant

composition fluid, and if we assume that it has been arranged such that

the fluid velocity is always increasing, its thermodynamic development

is characterized under steady state conditions by a local polytropic

coefficient n which theoretically deviates from zero for W=0 and

generally increases with W.
a

4.2.3 Variation of Temperature With W/a

Still under steady state conditions, and when the fluid velocity

passes through the value W = a the energy flux could be provided

to it has no influence on the corresponding local temperature gradient,

and this temperature passes through a maximum if the quantity dM + d_ZZ

is zero. M Z

In any case, the temperature of the fluid passes through a maximum(or

a minimum) each time that the condition:

is found to be realized. 1) (dQ--dE)+ T(,_ + -_) = 0

4.2.4 Detailed Reasons for Special Conditions Required for W=a and

Relationships Between dW, dZ and dQ-dE for W=a
W Z CT

In a more general fashion, we may define the physical reasons for

which the passage through the critical velocity _=_-_T presents special

significance in the flow of a fluid by noting t-hat this velocity

corresponds to the moment where (as the following calculation

demonstrates) the acceleration of the fluid determines, in the absence

of any energy addition, identical relative velocity variations and

relative specific volume variations; in this case, the variation of the

transversal cross-section of the fluid stream (which must be produced so

that the passage through the "speed of sound" is possible without

discontinuity) depends, for this particular velocity value, only on the

possible energy addition and possible variation of mean molecular mass

(in fact, these variations being incapable of instantaneously modifying
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the acceleration).

In fact, we have seen that for W=a, the relative variation of the
cross-section must have the value:

dE dQ--dE dM
-E--= CT M'

which can be interpreted by stating that the variation of cross-section
which defines the convergence or divergence of the tube in the cross-

section where the velocity W attains the value a must be precisely equal

in relative value to the variation of specific volume experienced by the

fluid in the vicinity of the same cross-section under the influence of

the chemical reactions and energy addition to which this is subjected.

In any case, starting with the previously established equations:

dP = --_- dW, ',x= p -v W,

d p d E dW
., +5-9-=0o E

/ 5__ss

and, designating the local polytropic coefficient by n, such that:

we obviously have:

where".

dP d ,_
--n

P

E dp En
dW = -- -nP ..... a" d p,

P _Y

dW 1 n aZ d__p.
w =

Such that by designating the specific volume by _, we can write:

dW n a2dv

"W -- yW_v _

an equation which not only confirms the identity of the relative

variations of velocity and specific volume above for W=a and for n= ,
but which demonstrates in addition that the relative velocity variation

is greater than the relative volume variation for W<a and lower for W>a,
with the obvious consequence of the fact that the cross-section

inevitably varies in the opposite direction from W, when W is smaller

than a, and in the same direction as the velocity when W is larger than
a.

In addition, d_WWmay be placed into the form:
W

dW _ na'(d@__ + dW\__..)W VW_ --/'

where:

n a_'x_n a' dE
rr ) "rw" z '
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an equation which is simplified for W=a to yield:

"Z -- W --I

This last equation demonstrates on the one hand that the cross-section

Z must pass through a minimum or maximum such that the velocity gradient

remains finite when we have n= (ie. not only for an isentropic flow,

but for any flow fulfilling this condition), and on the other hand that

for n# _, d W has a value determined as a function of d Z, which then,
W Z

as we have seen, must be different from zero, and also exactly equal to

the value defined by the condition:
dQ--dE dM d£

_0
CT M

which translates the condition from paragraph 4.2 into the case of the

steady state condition.
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4.3 Speed of Sound

We could not complete the present study without drawing attention to

the fact that the quantity _:_, which we have constantly called the

"speed of sound" according to standard usage, would not actually be the

velocity of a small perturbation in the fluid except in the case where

this small perturbation would not produce any variation of mean

molecular mass in this fluid, and consequently in particular in the_case

where the fluid would be of constant composition.

On the contrary, if we assume that the fluid composition

instantaneously follows the temperature and pressure variations which

are imposed on it, such that the chemical or thermodynamic equilibrium

is constantly realized, it is obvious that we must consider the fluid

flow resulting from the passage of a small perturbation as "isentropic"

in the most general meaning of this expression, ie. as corresponding to

an approximate entropy (31), or better still a constant total (32).

Such flow defines a local polytropic coefficient K at each point, such

that: dP dv 0
--p-- + K _ =

and it is useless to return to the classical calculations pertaining to

the speed of sound to establish that with the hypothesis considered,

this velocity has the value:

P

Finally, if the fluid flow resulting from the passage of a small

perturbation followed a law intermediate between the two preceding laws,
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or even some other law, the same considerations demonstrate that we
could still define a local polytropic coefficient K':

dp

K'-- P
dv '

0

such that the speed of sound would have the value:

P

4.4 Conclusion

In summary, we see that the extension accomplished in the present

report of the study method in differential form that we had already

applied in 1947 to the special case of steady state flow in cylindrical

tubes leads to new general equations [equations (i0) and (ii) of

paragraph 2.2], whose interpretation permits us to recognize immediately

for the first time the influence of the principal factors considered.

These equations definitively define the conditions to be fulfilled so

that the speed of sound can be exceeded without peculiarity in the flow,

as well as the manner in which the fluid flows along its path.

In addition, these two general equations demonstrate the existence in

the different cases considered of very surprising details:

-a subtraction of energy at supersonic velocities produces an effect
favorable for the acceleration of the fluid. ......

The velocity and pressure gradients pertaining to a steady state flow

with energy addition or chemical reaction are the same in a given cross-

section T of divergence d__Z with steady state flow and isentropic flow

Z

of a constant composition gas through the same cross-section, provided

that this time the divergence is equal to:

For a constant cross-section tube, the exponent n for the polytropic
W 2

tangent to the fluid flow constantly folloWS_a 2.

In the general case, the sonic velocity does not correspond to the

"throat" of the tube if this "throat" has a precisely sonic velocity.
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